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We have demonstrated the effectiveness of reinforcement learn-
ing (RL) in bluff body flow control problems both in experiments
and simulations by automatically discovering active control strate-
gies for drag reduction in turbulent flow. Specifically, we aimed
to maximize the power gain efficiency by properly selecting the
rotational speed of two small cylinders, located parallel to and
downstream of the main cylinder. By properly defining rewards
and designing noise reduction techniques, and after an automatic
sequence of tens of towing experiments, the RL agent was shown
to discover a control strategy that is comparable to the optimal
strategy found through lengthy systematically planned control
experiments. Subsequently, these results were verified by simula-
tions that enabled us to gain insight into the physical mechanisms
of the drag reduction process. While RL has been used effec-
tively previously in idealized computer flow simulation studies,
this study demonstrates its effectiveness in experimental fluid
mechanics and verifies it by simulations, potentially paving the
way for efficient exploration of additional active flow control
strategies in other complex fluid mechanics applications.

reinforcement learning | experimental fluid mechanics | bluff body |
drag reduction | accelerated discovery

The classical paradigm for designing fluid control strategies
consists of a first stage devoted to exploring and understand-

ing the physics of the problem over a wide parametric range,
followed by careful modeling and developing specially designed
control strategies to exploit the gained understanding, culmi-
nating in an optimal tuning of the control parameters (1). This
process involves careful computational or experimental investi-
gation, guided by intuition obtained through the investigation
and resulting in heuristically derived control techniques. Hence,
this procedure is typically quite slow to yield effective results. In
recent years, machine learning has received increasing attention
for fluid control problems (2) because it could provide a more
efficient pathway to achieving effective solutions. For example, in
complex flow problems without full understanding of the under-
lying physics, we could directly optimize the control strategy and
hence reduce substantially human involvement in the modeling
and design of the control strategies.

Among the machine-learning tools, reinforcement learning
(RL) offers intriguing opportunities for quick progress, as it
has demonstrated its potential for achieving “superhuman” per-
formance in board games (3, 4) and a capability for tackling
complex, high-dimensional continuous control tasks (5). Recent
explorations of RL for computational fluid mechanics prob-
lems include bio-locomotion of single and multiple fishes (6,
7), motion and path planning for aerial/aquatic vehicles (8–
10), active flow control for bluff bodies (11–13), and foil shape
optimization (14).

To our best knowledge, RL applications in fluid problems are
to date limited to computer simulations. Experimental testing
requires different methodologies, due to limitations in sens-
ing and actuation, noise in measured signals, and delay in data
transmissions. Hence, the feasibility of RL in experimental fluid
mechanics has remained an open question. To address this ques-

tion, in this work we consider the problem of flow control in
a bluff cylindrical body in cross-flow, using two small rotating
control cylinders; this system was first introduced in ref. 15. We
demonstrate that with a properly designed reward function and
noise reduction methodology, the RL agent can discover a flow
control strategy that is close to the optimal control found from
a laborious nonautomated, systematic grid search. To maximize
the system power gain efficiency, the RL agent can also find the
optimal strategy to achieve the balance between drag reduction
and power loss from friction. These are the two main experimen-
tal tasks we pursue in the current study, but in addition we verify
our experimental findings with high-fidelity simulations emulat-
ing the experimental conditions, hence providing the missing link
to the underlying modified flow patterns and associated physi-
cal mechanisms of drag reduction. Taken together, our results
suggest that RL can be applied to other complex experimental
fluid mechanics applications that may be difficult to tackle with
classical methods.

Problem Description
Turbulent flow past bluff bodies is encountered in a wide range
of natural and manmade systems that operate within a fluid. In
particular, the flow past a bluff cylinder has been characterized
as a “kaleidoscope” of interesting fluid mechanics phenomena
(16). Over a wide range of Reynolds numbers, the flow around
a cylinder is characterized by the formation of a downstream
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Fig. 1. Sketch of the reinforcement-learning process in both experimen-
tal and simulation environments for one episode. Generally, each episode
consists of two stages (the dashed blocks): In the first stage the agent inter-
acts with the experimental or simulation environment via the XML-RPC
protocol at a fixed frequency. Each interaction consists of a state inquiry
and an action decision; in the second stage the agent updates its pol-
icy based on the experience collected while waiting for the reset of the
environment.

wake, resulting in a significant low pressure region in the rear
of the cylinder and the periodical shedding of vortices due to
a flow instability (17–21). As a result, a bluff body in cross-
flow experiences a large mean plus unsteady drag force mainly
due to pressure drag (22) and a large oscillatory lift force that
may result in serious fatigue and subsequent structural damage
(21). Therefore, bluff body flow control is a main research topic
for fluid mechanics applications, using either passive or active
control methods (23). To use active control to either alter the
boundary layer or directly modify the wake, a flow control study
typically requires first a good understanding of the flow physics,
then a construction of a conceptual simplified model, and finally
a manual tuning of the control outputs (24). This process can be
quite lengthy and sometimes intractable for truly complex flow
problems.

For these reasons, we selected a bluff body flow control
problem to demonstrate the feasibility of applying RL to experi-
mental fluid mechanics problems. The model, shown in Fig. 1, is
chosen to use two fast-rotating smaller control cylinders to alter
the flow pattern around a main cylinder placed upstream within a
uniform flow, aiming to reduce the effective system drag or max-
imize the system power gain. Similar fluid problems have been
studied both experimentally (15, 25) and computationally (26),
investigating the effects of 1) the small to main cylinder diameter
ratio d/D , 2) gap ratio g/D , 3) the smaller control cylinder con-
figuration, and 4) the rotation rate ε= ωd

2U
on the fluid forces and

flow patterns. Here, D is the diameter of the main cylinder, d is
the diameter of the smaller control cylinder, g is the gap between
the main and each of the smaller cylinders, ω is the rotation
speed of the smaller cylinders, and U is the incoming velocity.
Past results showed that the counterrotating cylinder pair could
effectively reduce the main cylinder drag force as well as dimin-

ish the oscillatory lift force by suppressing the vortex shedding in
the wake (15, 27). The physics behind this phenomenon are that
when the control cylinders are placed at appropriate locations
and rotate at a sufficiently fast speed, they are able to interact
with the main cylinder separating boundary layers, causing them
to reattach and form a narrower wake behind the cylinder, hence
significantly reducing the pressure drag.

Technical Approach
Experimental Model and Procedure. The sketch in Fig. 1 outlines
the experimental procedure and highlights one episode of the
learning process, corresponding to one towing experiment last-
ing 40 s (the towing speed is 0.2 m/s and the entire towing
length is 8 m). At the beginning of each experiment, the con-
trol cylinders are held still for 4 s to ensure a fully developed
wake. Then, the RL agent starts interacting with the environment
via a state inquiry and an action decision at 10 Hz (δt = 0.1 s).
The states in the current experiment are the drag and lift coef-
ficients Cd and Cl on the three cylinders altogether, which are
calculated as

Cd =
Fd

0.5ρU 2DL
,Cl =

Fl

0.5ρU 2DL
, [1]

where ρ is the fluid density, and Fd and Fl are the average drag
and lift forces, respectively, over δt . After completing an exper-
iment, the carriage is brought back to the starting point at a
homing speed of 0.2 m/s. Then, the policy of the RL agent is
updated based on the experience learned from all of the previ-
ous experiments up to that time, while the environment is reset
and prepared for the next experiment. A 2-min pause is fol-
lowed between towing experiments to avoid cross-contamination
of results between successive experiments (28). The total wall
clock time for one episode is 3 to 4 min.

The policy of the RL agent in the current work is updated only
between experiments, instead of at every agent–environment
interaction, to reduce delays due to the limitation of our hard-
ware. The control and data collection interfaces are developed in
C# language, and the RL agent is implemented in Python lan-
guage based on the deep-learning package TensorFlow (29). The
Extensible Markup Language-Remote Procedure Call (XML-
RPC) protocol is then applied for data communication between
the cross-language platforms, which allows us to take advantage
of the machine-learning tools developed in Python, as well as the
established experimental and computational platforms in other
languages with minimum effort.

We present a description of the experimental hardware and a
pseudocode of the RL procedure in Materials and Methods. Fur-
ther details of the experiment setup and procedure are given in
SI Appendix, section S1.

High-Fidelity Numerical Simulation. In addition to experiments, to
explain the flow physics and visualize the wake patterns, we
also apply the same RL algorithm to the entropy–viscosity-based
large eddy simulation (LES) (30), which was implemented in the
framework of the high-order spectral element method (31).

The computational domain has a size of [−7.5D , 20D ]×
[−10D , 10D ]× [0D , 4D ] in the x , y , z direction, respectively.
The details of the setup, including mesh resolution and boundary
condition, can be found in SI Appendix, section S4. The Reynolds
number is ReD = 10,160, which is the same as that of the exper-
iment. In the simulation, a dimensionless time step 2× 10−4 is
used, and the state inquiry and action decision are made every
600 time steps. It is worth noting that the RL-guided LES starts
from the fully turbulent flow, which is the result of previous
simulation of flow in the same geometry configuration with the
small cylinders held still. The configuration parameters for the
simulation are presented in Table 1.
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Table 1. Experimental and simulation parameters

Parameter Experiment Simulation

D 5.08 cm 1
d/D 0.125 0.125
g/D 0.05 0.05
L/D 9 4
θ 2π/3 2π/3
ReD 10,160 10,160
δt 0.1 s —
δtD/U 0.395 0.12
εmax 3.66 3.66

Results
Experimental Task One: Drag Reduction. We have tested three
cases to demonstrate the importance of an appropriately
designed RL reward and the application of a Kalman filter (KF)
(32) for noise reduction when the agent inquires the states. The
results of the Cd and Cl as well as ε1,2/εmax for the first 200
episodes are plotted in Fig. 2, while the setups of the reward and
the filter in the three cases are as follows:

1) Case I: r =−sgn(Cd)C 2
d − 0.1Cl

2 with KF;
2) Case II: r =−sgn(Cd)C 2

d − 0.1Cl
2 without KF;

3) Case III: r =−sgn(Cd)C 2
d with KF.

The purpose of testing these three cases is to demonstrate the
importance of implementation of a real-time filter (case I vs. case
II) and a properly designed reward (case I vs. case III) for the
application of RL in fluid mechanics experiments. Compared to
the reward of case III, we augment the reward of case I with a
weighted squared lift coefficient and intend to inform the RL
agent to reduce the oscillating lift force by minimizing the drag
force through preventing the alternating shedding of vortices in
the cylinder wake.

The result of case I is plotted in Fig. 2A; it shows that Cd drops
quickly and converges to approximately C ∗d in about 10 episodes,
i.e., about 0.5 h in wall clock time, where C ∗d is the minimum
value found in the reference experiment of the control cylinders
rotating at ε2 =−ε1 = 3.66 (the result of the reference exper-
iment can be found in SI Appendix, section S1, together with
a comparison with the experimental result from ref. 25). The
learning curve of actions shows that the agent learns to rotate
the two cylinders in the opposite directions with near-maximum
speeds. We observe that the Cd increases in the first few episodes
before decreasing and converging to an asymptotic value, which
is a result of the agent’s random exploration in the early stage of
learning.

The time traces of Cd and actions of the four different
episodes in case I (highlighted with cross markers in Fig. 2A)
are displayed in Fig. 2D. A comparison between the raw data
(blue) and the filtered data (red) reveals that the KF manages to
remove the high-frequency oscillations in Cd . The first episode
in Fig. 2D 1) shows that when the learning process just begins,
the RL agent fails to make any informed decision. In the fifth
episode shown in Fig. 2D, 2) the RL agent explores the rotation
of the first control cylinder at its maximum speed in the coun-
terclockwise direction, which results in an increase of Cd . After
tens of policy updates, at the 50th episode shown in Fig. 2D, 3)
when the active control is turned on, the RL agent manages to
make the correct decision to rotate the control cylinders in the
right direction and at the right speed and, therefore, reduce the
Cd . Comparing the actions of the 150th episode in Fig. 2D 4) to
those of the 50th episode, we see that the actions are more stable
with less variation. Additionally, two repeated experiments have

been performed for case I, and the results can be found in SI
Appendix, section S2.

The result of case II is plotted in Fig. 2B and shows that after
200 episodes, the RL agent fails to reduce the Cd as effectively
as in case I where KF is employed. The learning curve of actions
indicates that the RL agent is not able to learn an appropriate
policy for the second rotational cylinder, resulting in large Cd

and Cl . The comparison between cases I and II clearly shows
the necessity of noise reduction when applying RL techniques in
experimental environments and real-world applications.

The results of case III are plotted in Fig. 2C and show that the
Cd is reduced slowly over the number of episodes. Between the
55th and the 150th episodes, the Cd reaches a relatively constant
value of about 0.83, which is higher than the C ∗d = 0.72, and the
Cl is as large as 0.77. With the increase of episodes, we observe
that around the 155th episode, the Cd drops suddenly and con-
verges to the C ∗d , while the magnitude of Cl decreases to a value
close to zero.

To explain such a drastic change of the hydrodynamic coef-
ficients at around the 155th episode, in Fig. 2 we visualize the
policy evolution between the 151st and the 160th episodes: The
RL agent policy is initially stuck at a local minimum but then
manages to escape due to exploration. During the entire learning
process, the values of Cd are mostly concentrated in the interval
[0.5, 1.5], while the values of Cl are mostly concentrated in the
interval [0, 1]. We highlight the two intervals by the black squares
in Fig. 2E. Note that inside the highlighted region, the policy for
ε2 gradually approaches the strategy of rotating with maximum
speed, showing the process of learning in the time interval. In
addition, the policy could be far from optimal outside the high-
lighted region, as the agent learns from the experience collected
and can hardly generalize the policy for outlier states.

Experimental Task Two: Maximization of the System Power Gain
Efficiency. We define the system power gain efficiency as η=
∆P/(0.5ρU 3DL), which increases as the drag force is reduced,
Cd0−Cd , and decreases as the power loss due to the friction
of the control cylinder rotation, Cf

πd
D

(|ε1|3 + |ε2|3), increases.
We restrict ε1 =−ε2 in this task, Cd0 is the average drag coeffi-
cient when ε1 = ε2 = 0, and the frictional coefficient is calculated
as Cf = 0.027/Re

(1/7)
d = 0.0097 (33). Our goal is to maximize

the average system power gain efficiency η over one episode.
Therefore, we construct the reward function as follows:

r = η=
∆P

0.5ρU 3DL
= [Cd0−Cd ]−

[
Cf
πd

D
(|ε1|3 + |ε2|3)

]
.

[2]
Due to the trade-off between drag reduction and the power loss
due to the cylinder rotation, for the static control, the maximum
of η is achieved at ε2/εmax≈ 0.8, shown in Fig. 3A by the black
solid line as reference. The dots in Fig. 3A represent η estimated
in each episode and are shown to be concentrated near the peak
of the reference line for episodes with well-trained RL agent.
In fact, the optimal η from the RL experiment is found to be
higher than the maximum from the static control, which could
be explained by the fact that the control strategy designed by the
agent is dynamic instead of static. We also plot the Cd and the
ε2/ε

max for each episode in Fig 3B.

Simulation Task. In the simulation task, we use the same reward
as in cases I and II of the experimental task one but we do not
apply the Kalman filter on the original states. Considering the
computational cost, the RL agent is designed to interact with the
environment more frequently, as shown in Table 1. Moreover,
each episode consists of a smaller number of state inquiries than
that in the experiments; the former consists of 10 interactions,
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Fig. 2. Training process in experimental task one: (A) case I, (B) case II, and (C) case III. In A–C, Top row shows the hydrodynamic coefficients over 200
episodes, and Bottom row shows actions over 200 episodes. The solid lines and the shaded areas represent the mean value and 1 SD over each episode (with
the first 50 and last 50 interactions dropped), respectively. The black dashed lines represent C∗

d . (D) Time trace of drag coefficient and actions (Insets) for
episodes 1, 5, 50, and 150 in case I. The carriage moves at the 10th s and stops at the 50th s. The active control is switched on at the 14th s. (E) Visualization
of the policy evolution from episodes 151 to 160 in case III, corresponding to the region between the two green dashed lines in C. In E, Top row shows
ε1/ε

max and Bottom row shows ε2/ε
max in terms of Cd and Cl.

while the latter consists of 360 interactions, corresponding to
about 0.24 and 28 vortex shedding periods, respectively. In Fig. 4,
we present the drag coefficient as well as the actions during the
training, where we can clearly see that the agent learned to rotate
both cylinders at about the maximum speed, consistent with that
in the experimental task one. Consequently, the drag coefficient
is reduced from about 1.0 to about 0.7. The lift coefficient did not
converge to zero, which could be attributed to the fact that the
rotations of the two cylinders are not completely symmetric, just
as in the experiments.

Having the three-dimensional (3D) simulation results avail-
able, we can now explain the changing flow topology and quantify
the emerging dynamics. The instantaneous 3D vortical wake and

ωz (the z component of vorticity averaged both in time and in
the spanwise direction), at three different stages, namely before
training, after the 100th episode, and after the 500th episode,
are shown in Fig. 5 A–C, respectively. When the two small cylin-
ders are held still, due to the small gap between the large and
small cylinders, a jet is formed within the gap, shown in the local
velocity field around the small cylinder in Fig. 5A. As observed
in the mean vorticity field, such a jet results in the vortex for-
mation about 1D behind the rear of the main cylinder. With the
increase of the rotation speed of the small cylinders, the shed
vortices appear to move closer to the main cylinder aft part, and
when the maximum rotation rate is reached (Fig. 5C), a pair
of elongated vortices is formed right behind the main cylinder.
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GFig. 3. Training process in experimental task two. (A) Evolution of average
power gain efficiency η during the training process. The black solid line and
the shaded area represent the mean and 1 SD of η with constant ε1 =−ε2

over three independent experiments. The dots represent η in each episode,
while the different colors represent different episode indexes. (B) ε2 and Cd

in each episode. The solid lines represent the mean value over each episode
while the shaded areas represent 1 SD over each episode.

Such an evolution of the flow morphology is also reflected by the
narrowing of the streamlines around the cylinders (the stream-
lines in Fig. 5 start from points (−1.5D, ±0.2D) from the center
of the main cylinder). Furthermore, the pressure distribution
around the cylinder circumference reveals that the fast-rotating
small cylinders help to reattach the flow at the rear of the main
cylinder. In Fig. 5 A–C, Top, the red line indicates the pres-
sure distribution around the main cylinder, with influence of the
small control cylinders, while the dashed black line represents
that of the single cylinder at the same Re . In Fig. 5 A–C, Middle,
red color represents positive pressure values while green color
is for negative pressure values. As a consequence, the pressure
on the rear cylinder surface recovers to a negative value with

a smaller magnitude, compared to the nonrotating case, which
subsequently leads to a significant pressure drag reduction.

From the instantaneous 3D wake pattern (vortices are repre-
sented by the isosurface of λ2 =−1.5 and colored by the ωz ),
we observe that when the two small cylinders are held still,
spanwise coherent vortex tubes are shed from the back of the
main cylinder, accompanied by sparse streamwise vortices. When
the small cylinder starts to rotate, many streamwise vortices of
smaller size are generated, suggesting turbulence intensification.
In addition, we observe that at the front half of the cylinder
characterized by favorable pressure gradient, with the two small
cylinders held still, the isosurface of λ2 is smooth along the
span; however, when the small cylinders are rotating, the isosur-
face of λ2 in the front half of the cylinder becomes wavy along
the span.

The simulation takes about 0.65 s wall time for each time step
on 64 cores of Intel E5-2670, i.e., about 1.1 h for each episode.
In total, 500 episodes take more than 3 wk. As an easier case for
readers to reproduce, we also conducted RL in a similar problem
with ReD = 500, where it takes about 0.75 h for each episode on
12 cores of Xeon(R) Gold 6252 and about 100 episodes, i.e., 3
to 4 d, for full convergence. We present this case in SI Appendix,
section S6.

Discussion
We demonstrated the feasibility of applying reinforcement learn-
ing to discover effective active control strategies in complex
experiment and simulation environments for turbulent flow past
a circular cylinder.

We selected this problem as representative of many com-
plex flow–structure interaction problems, because despite the
apparent simplicity of the system, consisting of a long circular
cylinder in cross-flow with two smaller rotating cylinders for con-
trol, the mechanics of flow instability that cause vortex formation
are known to be very complex. Despite decades of research,
additional phenomena are being discovered in vortex-induced
oscillations (34), such as multivortex shedding and high harmon-
ics in fluid forces. When control action is used experimentally in
such problems, the inherent complexity of their response makes
human-guided selection difficult, and only systematic search can
yield eventually an optimal solution. For a problem with few
parameters, such as the current one, a systematic search is feasi-
ble, albeit very laborious. For realistic applications in marine and
air vehicle control, for example, a multitude of parameters make
a systematic parametric search of a high-dimensional problem
virtually impossible; this is where reinforcement learning holds

Fig. 4. Training process in the simulation task. (A) Drag and lift coefficients and actions over 500 episodes. The lines represent the mean value over each
episode. Note that one episode corresponds to 0.24 vortex shedding periods. (B) Visualization of policy evolution after 50th to 500th episodes. A, Left to
Right shows ε1/ε

max while B, Left to Right shows ε2/ε
max in terms of Cd and Cl.
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Fig. 5. Visualization of the vortical flow at three different stages of training. (A) Before training (both small cylinders are held still). (B) After 100 episodes
(both small cylinders rotate at an intermediate speed). (C) After 500 episodes (both small cylinders rotate at about the maximum speed). (A–C, Top) Local
pressure coefficient on the cylinder surface as a function of angle (θ), with the front stagnation point as the zero degree. The coefficient is shown by the
red lines, with black dashed lines representing the reference coefficient of a single cylinder. (A–C, Middle Left) z component of vorticity averaged spanwise
and in time with the green/red area indicating the magnitude of negative/positive pressure on the main cylinder. (A–C, Middle Right) Velocity field near the
upper small cylinder. (A–C, Bottom) Three-dimensional vortices. Note that to plot B, we restart the simulation from the flow snapshot saved at episode 100,
keep the control cylinders rotating at same speeds as those of episode 100, and continue to run the simulation over two vortex shedding periods; similar
procedures are performed to obtain C.

great promise. Still, even in this lower-dimension problem there
are generic problems that it shares with more complex problems;
noise in the measurements provides added difficulty and requires
special treatment.

Specifically, we used as an example the problem of reduc-
ing the drag force acting on a circular cylinder in cross-flow
using as actuators two smaller rotating cylinders and account-
ing for the energy loss in the cylinder rotation. With a properly
designed reward function, the agent was able to learn a con-
trol strategy that is comparable to the optimal one found in
extensive static control experiments, using only tens of experi-
ments and requiring only several hours of wall-clock time. The
RL agent managed to learn the successful control strategy of

small cylinder rotation to reattach the flow behind the main cylin-
der and hence increase the rear pressure recovery, as illustrated
in the companion simulation studies. Here we point out that
in the simulation task, the current bottleneck of the computa-
tion is due to the high-fidelity LES, which takes more than 3
wk for 500 episodes on 64 cores of Intel E5-2670. The training
time of the RL agent is negligible compared with the time con-
sumed by LES. Parallelization of multiple simulation environ-
ments interacting with the same agent, when there are enough
computational resources, can be one of the solutions for the
speedup.

We also note that when applying reinforcement learning in the
real-world experiment, it is important, as a first step, to identify

Fig. 6. (A–C) Images of the control panels (A) and model side view (B) and back view (C) used in the experiment.
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the limitations of the available hardware. Taking our experiment
as an example, the constraints of the communication speed and
the motor response time limit the frequency of the state inquiry
and action decision, which may be essential for other flow con-
trol problems, for example, using high-frequency traveling waves
to control the flow around an airfoil (35). Additionally, the rota-
tion speed of the control cylinders cannot exceed ε= 3.8 due
to the structural pin–pin setup; when the motor rotates faster
than ε= 3.8, the control cylinder starts to vibrate laterally as
a flexible cylinder, hence changing the physics of the problem.
Furthermore, in the current experiment, we demonstrated the
necessity of noise reduction techniques using a Kalman filter,
a method which is especially suitable for experimental setups,
while in the future, research should be performed on whether
and how the neural network itself may regularize and quantify
the noise.

Based on our findings and the experience gained both from
the experiments and the simulations, we believe that RL can be
applied to a variety of complex flow problems. Several issues still
remain open for applying RL in fluid mechanics. For example, we
reported that the learning results are sensitive to the selection of
the exploration noise magnitude in the RL algorithm. The hyper-
parameter setups developed for rigid body testbed problems
could be unsuitable for fluid mechanics problems. This calls for
future studies to design algorithms and select hyperparameters
suitable for fluid mechanics. Also, while the learning algorithm
we employed is totally model-free, it will be worth exploring
the possibility of incorporating some domain knowledge and
designing physics-informed reinforcement learning algorithms,
to further reduce the time to solution.

Materials and Methods
Experimental Model and Hardware. In Fig. 6 we show the control panels and
model used in the experiment. The control panels in Fig. 6A have two decks
and consist of six major components: two DYN2-series motor controllers,
one NI USB-6218 Data Acquisition (DAQ) board, one ATI sensor amplifier,
and two power sources. The DAQ board in the upper deck is controlled
through the USB communication, and it is in charge of the analog data col-
lection from the sensor amplifier at a sampling rate of 1,000 Hz and sending
the signal to the two motor controllers at a feedback rate of 10 Hz. In the
lower deck, two independent DYN2-series servo motor controllers for two
DST-410 servo motors are powered by a 60-V DC power source.

Images of the experimental model are shown in Fig. 6 B and C for two
views. The main cylinder is made from a hard-anodized aluminum tube
to prevent corrosion in the water. The two smaller stainless steel cylinders
are connected to the two DST-410 motors via couplings and are supported
by the bearings on both ends. Shown in Fig. 6B, the ATI-Gamma sensor is
installed on top of the model and is used to measure the total lift and drag
force on the main and two smaller cylinders altogether.

Reinforcement Learning. Reinforcement learning involves an agent inter-
acting with the environment, aiming to learn the policy that maximizes
the expected cumulative reward. At each discrete time step i, the agent
makes an observation of the state si ∈S, selects corresponding actions
ai ∈A with respect to the policy π :S→A to interact with the environ-
ment, and then receives a reward ri . The objective is to find the optimal
policy πφ parameterized by φ which maximizes the expected cumulative
reward,

J(π) =E(si ,ai )∼pπ

T∑
i=0

γ
iri , [3]

where γ ∈ (0, 1] is a discount factor and pπ denotes the state-action
marginals of the trajectory distribution induced by the policy π.

As mentioned in the previous subsections, in the current work the state
is the concatenation of Cl and Cd , while the action is the concatenation of

ε1/ε
max and ε2/ε

max . The reward received in each time step is induced from
the state and action in the subsequent interaction.

The update of the agent follows one of the state-of-the-art deep RL algo-
rithms, viz. the Twin Delayed Deep Deterministic policy gradient algorithm
(TD3) (36). We provide the pseudocode in Algorithm 1. In this paper, all
of the neural networks are feedforward neural networks with two hidden
layers, each of width 256. The discount factor γ is set as 0.99. The SD of
the policy exploration noise σ is set as 0.1 in the experimental task one of
drag reduction, 0.01 in the experimental task two of system power gain
efficiency maximization, and 0.025 in the simulation task of drag reduction.
We use the Adam optimizer with learning rate 10−4 to update θi and φ.
Ni is ∼360 in experiments and 10 in simulation, while Nj is set to 1,000 in
experiments and 100 in simulation. The batch size N is set to 512 in exper-
iments and 256 in the simulation. (Note that we skip the training stage
if the number of tuples in the buffer is less then N.) The SD of the reg-
ularization noise σ̃ is set to 0.2, and c is set to 0.5. The actor and target
networks are updated every d = 2 iterations. The soft updating rate τ is set
to 0.005.

Algorithm 1: Reinforcement learning for active fluid control
with TD3

Data Availability. All study data are included in this article and SI Appendix.
In addition, the code for the reinforcement learning agent and simula-
tion environment is shared via GitHub at https://github.com/LiuYangMage/
RLFluidControl.
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